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THERMAL DIFFUSIVITY OF INHOMOGENEOUS SYSTEMS
1. TEMPERATURE-FIELD CALCULATION

G. N. Dul'nev and A. V. Sigalov UDC 536.24.02

The possibility of analyzing the nonsteady temperature fields of inhomogeneous systems using
the guasi-~-homogeneous-body model is investigated.

Definition of Quasi-Homogeneous Body

A system consisting of homogeneous regions (components) divided by boundary surfaces is usually re-
ferred to as inhomogeneous or heterogeneous. Offen, in order to calculate the temperature field, this body is
replaced by a quasi-homogeneous body with effective thermal conductivity and diffusivity (A, @) and volume spe-~
cific heat (cp). It is then postulated that the temperaturefield of this body is described at all points by the equa-
tion

1 ot (1)

LI LA 7

a Ot
and in specifying the conditions at the external boundaries the effective thermal conductivity is used. This is
determined either experimentally, or by the methods of generalized conduction theory [1], and is equal to the
ratio of the mean flow <g> through the body and the mean temperature gradient <Vt in the body
A=—(q)/(vt). 2)

The effective volume specific heat is determined from the additive formula

k
o= Y cipim; 3)
i=1

and the effective thermal diffusivity is found from a formula valid for a homogeneous body
a= Mecp. 4)

This approaches to the analysis of inhomogeneous~system temperature fields is widely known, but it is
not possible to find a sufficiently general justification of this method in the literature. In the present work, the
error involved in passing to a quasi-homogeneous body for the calculation of nonsteady temperature fields isin-
vestigated, and the limits of applicability of the model in Eqs. (1)-({4) are established.
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Consider, first of all, the accurate formulation of the problem of the temperature field of a system of k
components with the properties A;, aj, (cp)j (i=1, ..., k). The temperature field of the system is described using
k differential equations
gt

—;— . (5)

with the following conditions on all the boundary surfaces S; of the components
dat; Oty ' . (6)

== 'Y‘ ———— t~ :t'_},_
on s, i on s’ ‘lsi itls,

i

Ay

and corresponding conditions on the external boundaries of the system and initial conditions.

The basic method of investigation is to compare the accurate and approximate solutions and formulate, on
this basis, the definition of a quasi-homogeneous body. In the past, a quasi-homogeneous body has been taken
to be a model satisfying Eqgs. (1)-(4), but it is necessary to formulate an additional condition on the temperature
field of the quasi~homogeneous body. Various requirements may be assumed, for example, equality betweenthe
volume-averaged femperature ty of the quasi~-homogeneous body and tyy of an inhomogeneous system

tv(T) = tv[ (T)» (7
or equality between the nonsteady heat fluxes absorbed by a quasi-homogeneous body and a heterogeneous sys-
tem

ot & at;
A—dS= Ay —2 dS;, (8)
sj on 2 f Yan

=1

or minimizing the mean-square error in determining the temperature field o

Ty

2 _ 1 ' _ 9
o T \Sj‘(t 1) dVd. (9)

To

In the given definitions, conditions have been imposed on certain integral characteristics of the system; other
conditions may also be proposed.

Analysis of the Simplest System

The general definition of a quasi-homogeneous body will be applied fo the simplest inhomogeneous sys-
tem consisting of two plates perpendicular to a heat flow. The temperature field of the plates (i =1, 2) is de-
scribed by Eq. (5) for the region x€(0, {,), x€ (,, 1), and in the plane x =1, the condition in Eq. (6) is specified

oty ot,

= A
lt. " ox

The temperature field of a quasi~-homogeneous body is described by Eq. (1). Suppose that the thermal
conductivity and volume specific heat are defined by Eqs. (2) and (3). Adopting the requirement that Eq. (7) be
satisfied for the quasi-homogeneous body, it will be investigated whether Eq. (4) holds for the model described
by Egs. (1)-(3) and (7).

- (10)

b(ly, )= t{ly, ), M

1y

The averaging operation

d

¢ 1)

Ifi= —d—__—b*s fdx = f,

. b
is applied to Egs. (1) and (5) on the segments [0, Z,}, [I, I], and [0, !]. Manipulation leads to the relations
dtlv - _ci Bti . ati (12)
dv A ax |, ax lo]’

dtQV as atz atz
=2 — , 3
dv [—1 [ x | 0x ,1] (13)
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_ ot
! Ox

dtv o a ot
dt {

7 |

Multiplying Eq. (12) by A; and Eq. (13) by A,, and adding them, it is found, when the equality of the fluxes at the
boundary surface in Eq. (10) is taken into account, that

] ‘ (14)

0]

Ml diy L b)) dby g dt,
@y dv a, dr c o oox

(15)

— M

! ox

o}
Consider the difference Aq in the heat fluxes entering and leaving the inhomogeneous system and the quasi-
homogeneous body

i Ot ot
Ag=104 | —| — —| ],
7 ( ox |1 dx 0) (16)
A(,JI: A Oty vy oty _
! 0x o

The effective thermal conductivity of the given plate system is [1]

m }—my !
b [T 1 . amn
= ( }\'1 + ‘—“"“_;\2 ) , My = li/l;

It may be shown that, with this definition of A, equality of the unsteady fluxed absorbed by the heterogene-
ous system and the quasi-homogeneous body is not ensured, and a flux-difference parameter can be introduced
Agr—A
'y('r) = ...u .
Agq

It follows from Eq. (7) that

diy g v gy v (18)

dt dt dt

Substituting Eq. (18) into Eq. (14), and taking Eqs. (15) and (16) into account, the following expression is
obtained for the parameter a

A (my + Kmy) K — v [ dhy (19)

a = 1
(1 4 ) [y (cp)s -+ moK (cp)ol dv | dv

which differs from Eq. (4) in including the regime parameters K and . Processing in the opposite direction,
and requiring that the flux equality Aq = Aqp be satisfied at any moment of time, would lead to the following ex-
pression for A

A o, |
/.,ﬂ —li i .
- dx ]1 dx (20)
DA
0x i 0x 1o

i.e., the effective conductivity of the system would become a regime parameter, but the parameter y would dis.
appear from Eq. (19).

If the parameters a(7) and A(T) are determined from Eqgs. (19) and (20), it is possible to satisfy the twocon-
ditions of a quasi~-homogeneous body: ty =ty and Aq = Aqp. However, when even one of the coefficients A, a,
and cp becomes a function of the time, it is no longer of any practical interest, since the analysis of the tem-
perature field becomes problematic. Therefore, the usual quasi-homogeneous-body definition in Egs. (1)-(4)
will be adopted, and the conditions under which its temperature field satisfies Eqs. (7)-(9) with a satisfactory
degree of approximation will be investigated.

Error of Approximate Calculations. Plates Perpendicular to Flow

The temperature field of a two-component inhomogeneoss system consisting of N plates normal to the
direction of heat flow (Fig. 1) will now be compared with that of a quasi-homogeneous body with various heat-
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Fig. 1. System of plates perpendicular to heat flow.

Fig. 2. Temperature field of quasihomogeneous body and system of
plates perpendicular to heat flow for v = 1072, 8 = 10-2, Fo = 0.05; 1)
quasi~homogeneous body; 2) N =8; 3) N =4.

transfer conditions at its external boundaries. For convenience, EQs. (1), (5), and (6) are written in dimension-

less form, introducing the dimensionless numbers

t(x, Fo)— ¢, et o~ X ’ 21
—i = e @b

where tg is the initial temperature and . the characteristic temperature chosen in the light of the conditionsbe-

ing considered.

O (x, Fo) =

The thermal conductivity of the quasi-homogeneous body is determined from Eq, (17), and the thermal
diffusivity from Eqs. (3) and (4)

_1 "‘
L ("M—F—ﬂﬁ)(mi—kmg V)] L ve= 2 g B (22)
a \ v B Ay ay
The quantities
tVH — tV
ABy = ————={(v, B, m, N, Fo) (23)
t,—1,

and

1
o? = [ (6,—ORdx=¢(v, B, mi, N, Fo) (24)
8

are introduced for quantitative description of the error in determining the inhomogeneous-system temperature
field from the quasi-homogeneous-body model.

The temperature field of the inhomogeneous system was determined by numerical solution of Egs. (5) and
(6) by the finite-difference method, using an implicit scheme realized on an ES-1022 computer; the error of
the numerical calculations A®~ 0.01-0.02 [2].

The results calculated for the error in passing to a quasi-homogeneous body with different heat-transfer
conditions at the boundaries are given below. ’

In the case of thermal impact at one of the faces, the boundary conditions take the form
©(0, Foy=1, O(1, Fo)=0, 8(x, 0)=0. (25)
The change in the arguments in studying Eqs. (23) and (24) was within the following limits
v=102—1, p=10"%— 10} N=2—24, Fo=0.02— co. (26)

The concentrations of the components were taken to be m; = m, = 0.5, since in this case the error in passing
a quasi-homogeneous body is a maximum.
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In steady conditions, with the boundary conditions in Eq. (25), the temperature distribution in the com-
ponent plates takes the form of a discontinuous curve, and the errors A®vy and 6, are given by the expressions

B00)s = =Y (6 =~ (27)

N (14v) T VN 4v)

The calculations showed that, in nonsteady conditions, A®y; varies weakly over time and, when N=8,
A®y =~ (A@y)gt. The mean-square error g, may be evaluated from the machine-empirical relations

o = (1 _‘1-95_5_) , (28)
- V3N (1 +v) FoVN
Thermal impact at the heat-insulated end of the face is described by the boundary conditions

(0, Fo) = 1, &(g’_—}—:ﬂ:o, 8 (x, 0)=0. (29)

When Fo = 0.02-0.5, the error A®y and o, may be evaluated from Eqgs. (27) and {28); when Fo >0.5, they are
less than the steady values in Eq. (27).
In conditions of thermal impact at both faces, described by the boundary conditions
0 (0, Foy=1, 8(1, Fo)=1, &(x, 0) =0, (30)

the error A@(1/2, Fo) in defermining the temperature at the center of the plate and A®y is practically zero,
while 0, may be determined as for the conditions in Eq. (29) if half the system is considered.

The effect of the ratio # when v = const on the error in determining the temperature field of the given
plate system does not exceed the error of the numerical solution. The recommendations given for evaluating
the error are valid for N= 4; for N = 2, the quasi-homogeneous-body model is inapplicable,

The error in determining the temperature field with boundary conditions of the third kind for the case of
identical heat-transfer coefficient « at the two faces take the following values for Bi= al/A = 0.1-10:

A®vy and A® {1 /2, Fo) do not exceed the error of numerical calculation over the whole range of Fo;

the error of calculating the surface temperatures A®(1, Fo), A®(0, Fo) rises with increase in Bi, reach~
ing A®=~ 1/N when Fo=0.01; when FoZ 0.1, this error does not exceed the error of the numerical calculation;

o rises with increase in Bi, but does not exceed the value determined for the boundary conditions in Eq.
(30).

Steady conditions in heterogeneous systems with an internal heat source were studied in [2], where the
error of passing to a quasi-homogeneous body was estimated by the formula

l_‘g‘ Gu—d v [ Ay +-E (1+1~_{LY1”1, (31)
p = Ou 1+ 4/4 aly 2 L !

where & is the overheating with respect to the temperature of the medium at the center of the i-th pair of plates;
$[, maximum overheating in the system; p, number-of pairs of plates.

Calculations of the nonsteady heating of an inhomogeneous system with uniformly distributed local heat
sources have shown that the error with reference to the current value of the maximum overheating 4y(7) is
close to 64 as determined from Eq. (31).

As an example, the temperature field of the inhomogeneous system and the quasi-homogeneous body with
the boundary conditions in Eq. (29) is shown in Fig. 2, for v =107%, 8 =107%, N=4, and N =8.

Plates Parallel to Heat Flow

Consider a system of plates of dimensions I (macrodimension) and h (microdimension), consisting of two
components with properties 2, (cp)j, and ¢; (Fig. 3). It is sufficient to perform the temperature-field analysis
in a system of two half-plates bounded by the adiabatic planes y = 0 and y = h.

The thermal conductivity A of the system is [1]
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Fig. 3. System of plates parallel to heat flow.

Fig. 4. Temperature fields of quasi-homogeneous hody and system
of plates parallel to heat flow in cross section X=1 when v = 1072,
B=10"2%, Fo=0.25; 1) quasi-homogeneous body; 2) £=0.1; 3) ¢ =
0.2; 4) ¢ =0.5.

A= mﬁ»i + m27\42 , M; = hi/h, (32)

while the volume specific heat and thermal diffusivity are determined from Eqs. (3) and (4), which leads to the
expression

a p—
42]

In the accurate temperature-field analysis, the problem was solved numerically by the finite-difference
method, using a locally one-dimensional scheme [3]. The error of the numerical calculations was A® = 0.02-
0.03.

As a quantitative characteristic of the difference between the temperature fields of the inhomogeneous

system and the quasi~-homogeneous body the mean-square error o} was chosen

g1
o} = ‘l—fj (01 —O) dxdy = P(e, v, B, my, Fo), &= hil. (33)
00

The calculations showed that the error in Eq. (33) reaches a maximum in conditions of thermal impact
with the following boundary conditions

00,

X lx=1

(34)

8;(0, ¥, Fo)=1, ~0(i=1,2).

The case of equal concentrations of the componeénts was considered.

The error o) depends signiricantly on all the factors—e, v, 8, and Fo. The dependence on Fo was not
studied, in view of its complexity, and the maximum value of off in the range Fo = 0.05-0.5 was considered. To
estimate o), a machine-empirical dependence was constructed using the complete three-factorial plan of the
experiment [4]: when v =10-3-10~1, 8 =10-3-10~1, and & = 0.05-0.2

0y =0.014(1 4 1gP) lgv 4+ £(0.28 + 0,12 Igv - 0,18 Igp+0.22 1gvIgf), (35)
and when v = 102—10, §=101—1, e=0.1—0.5
o1 = (0.075 lgv— 0,13) ¢ 1g B. (36)
Investigation of the nonsteady conditions for heat transfer with boundary conditions of the third kind
09; A ) 00, .
L — Bi g, =0, 2 =0,i=1,2 37
( ax + A 1 ) =0 0x | :

showed that the error oy may be given an upper bound using Egs. (35) and (36), except in the case ~1, v«1,
since under the conditions in Eq. (34) 0—0 when f—1, and for Eq. (37) oy > 0 when 8= 1 if A #2,.
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In Fig. 4, the temperature fields of the inhomogeneous system and the quasihomogeneous body are com-
pared in the case of the boundary conditions in Eq. (34) when v = 1072, B=1072, £= 0.5, 0.2, 0.1 (the temperature
distribution in the cross section x= 1 is shown).

Thus, the temperature field of the inhomogeneous system may be approximately calculated from the quasi-
homogeneocus-body model in Eqs. (1)-(4); in this case, Eqs. (7)-(9) are satisfied with a certain degree of ap-
proximation. For the simplest inhomogeneous systems, estimates of the error in passing to a quasi-homogene-
ous body have been obtained. For more complex systems (e.g., a structure with mutually interpenetrating com-
ponents [1]), the following estimate may be proposed

o<{max{o), o} (38)
NOTATION

t, t1, tj, temperature of quasi-homogeneous body inhomogeneous system, and i-th component of system;
a, A, cp, thermal diffusivity and conductivity and volume specific heat of quasi-homogeneous body; aj, Aj, Cui,
the same quantities for the i-th component; g, heat flux; 8, V, system surface and volume; x, y, coordinates;
!, macrodimension of system; ©, dimensionless temperature; Fo= at/1%, Bi= al/A, Fourier and Biot numbers;
v=2Ay/A; B=ay/a;; N, number of plates; & = h/1, ratio of micro-~ and macrodimensions; A®y, ¢, volume-
averaged and mean-square error of dimensionless-temperature determination; 7, time; mj, i=th component
concentration.
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DETERMINATION OF PARAMETERS OF ARTIFICIAL
CONSTRUCTIONAL CONGLOMERATES USING
CRITERIAL EQUATIONS

V. N. Evstifeev and L. S. Evstifeeva UDC 539.21

Generalized similarity criteria and criterijal equations are proposed for determining the phys-
icomechanical and thermotechnical parameters of artificial constructional conglomerates and
their mixtures.

The definition of artificial constructional conglomerates (ACC), nomenclature, and theoretical and experi-
mental investigations of their properties are given in [1].

At present, considerable experience has been accumulated in determining the change in ACC parameters
on the basis of experimental investigations. These parameters, as a rule, are expressed by empirical depen-
dences. The result of this empirical approach, however, is that sometimes there is a large number of formu-
las for determining the same ACC parameters.

In the present work, an approach to the determination of ACC parameters is outlined involving the use of
criterial equations which include both individual criteria and generalized similarity criteria obtained as a re-
sult of similarity theory and dimensional analysis of physical quantities characterizing the ACC properties.
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